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ABSTRACT

Sensitivity is a prominent aspect of chaotic behavior of a dynamical sys-

tem. We study the relevance of nonsensitivity to fixed point theory in

affine dynamical systems. We prove a fixed point theorem which extends

Ryll-Nardzewski’s theorem and some of its generalizations. Using the

theory of hereditarily nonsensitive dynamical systems we establish left

amenability of Asp(G), the algebra of Asplund functions on a topological

group G (which contains the algebra WAP (G) of weakly almost periodic

functions). We note that, in contrast to WAP (G) where the invariant

mean is unique, for some groups (including the integers) there are un-

countably many invariant means on Asp(G). Finally, we observe that

dynamical systems in the larger class of tame G-systems need not admit

an invariant probability measure, and the algebra Tame(G) is not left

amenable.

∗ This research was partially supported by Grant No 2006119 from the United

States–Israel Binational Science Foundation (BSF).

Received September 7, 2010

289



290 E. GLASNER AND M. MEGRELISHVILI Isr. J. Math.

Introduction

Let S be a semigroup, X a topological space, and S ×X → X a semigroup ac-

tion of S on X such that the translations λs : X → X, s ∈ S, written usually as

λs(x) = sx, are continuous maps. We will say that the pair (S,X) is a dynam-

ical system, or that X is an S-system. If, in addition, X = Q is a convex and

compact subset of a locally convex vector space and each λs : Q → Q is an affine

map, then the S-system (S,Q) is called an affine dynamical system. We use

the symbol G instead of S when dealing with group actions, and we require in

this case that the group identity acts as the identity map. The topological and

locally convex vector spaces (over the reals) in this paper are assumed to be

Hausdorff.

Let ξ be a uniform structure on an S-system X . We say that the action of

S on X (or, just X , or S, where the action is understood) is ξ-distal if every

pair x, y of distinct points in X is ξ-distal, i.e., there exists an entourage ε ∈ ξ

such that

(sx, sy) /∈ ε ∀s ∈ S.

We recall the following well-known fixed point theorem of Ryll-Nardzewski [31].

Theorem 0.1 (Ryll-Nardzewski): Let V be a locally convex vector space equi-

pped with its uniform structure ξ. Let Q be an affine compact S-system such

that

(1) Q is a weakly compact subset in V ,

(2) S is ξ-distal on Q.

Then Q contains a fixed point.

In the special case where Q is compact already in the ξ-topology, we get

an equivalent version of Hahn’s fixed point theorem [17]. There are several

geometric proofs of Theorem 0.1; see Namioka and Asplund [29], Namioka [23,

24, 26], Glasner [5, 6], Veech [33], and Hansel–Troallic [18]. The subject is

treated in several books; see, for example [6], Berglund–Junghenn–Milnes [2],

and Granas–Dugundji [15].

A crucial step in these proofs is the lifting of distality on Q from ξ to the

original weak compact topology.

In Section 1 we present a short proof of a fixed point theorem (Theorem

1.6) which covers several known generalizations of Theorem 0.1 (see Corollary

1.7). Moreover, we apply Theorem 1.6 in some cases where Ryll-Nardzewski’s
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theorem, or its known generalizations, do not seem to work. See, for exam-

ple, Corollary 1.11, where we apply our results to weak-star compact affine

dynamical systems in a large class of locally convex spaces.

The main tools of the present paper are the concepts of nonsensitivity and

fragmentability. The latter originally comes from Banach space theory and has

several applications in Topology and recently also in Topological Dynamics.

Fragmentability (or the weaker concept of nonsensitivity) allows us in Lemma

1.2 to simplify and strengthen the methods of Veech and Hansel–Troallic for

lifting the distality property. As in the proofs of Namioka [24] and Veech [33],

the strategy is to reduce the problem at hand to the situation where the exis-

tence of an invariant measure follows from the following fundamental theorem

of Furstenberg [4].

Theorem 0.2 (Furstenberg): Every distal compact dynamical system admits

an invariant probability measure.

This result was proved by Furstenberg for metric dynamical systems using his

structure theorem for minimal distal metric G-systems (where G is a group).

The latter was extended to general compact G-systems by Ellis [3], and conse-

quently Theorem 0.2 is valid for nonmetrizable G-systems as well. Now from

Ellis’ theory it follows that the enveloping semigroup of a distal semigroup ac-

tion is actually a group and this fact makes it possible to extend Furstenberg’s

theorem to distal semigroup actions. See, e.g., Namioka’s work [24], where a

proof of Theorem 0.2 is obtained as a fixed point theorem.

In Section 2 we discuss the role of hereditarily nonsensitive dynamical systems

and the existence of invariant probability measures. As was shown in [9], a

metric compact G-system is hereditarily nonsensitive (HNS) iff it can be linearly

represented on a separable Asplund Banach space V . It follows that the algebra

Asp(G), of functions on a topological group G which come from HNS (jointly

continuous1) G-systems, coincides with the collection of functions which appear

as matrix coefficients of continuous co-representations of G on Asplund Banach

spaces. Replacing Asplund by reflexive, gives the characterization (see [22]) of

the algebra WAP (G) of weakly almost periodic functions. Since every reflexive

space is Asplund we have WAP (G) ⊂ Asp(G). Refer to [22, 9, 10, 11] and the

1 In this context the topology on G becomes relevant.
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review article [8] for more details about HNS, Asp(G) and representations of

dynamical systems on Asplund and other Banach spaces.

From the theory of HNS dynamical systems, as developed in [9], we deduce

the existence of a left invariant mean on Asp(G) (Proposition 2.3). We note

however that, in contrast to the uniqueness of the invariant mean on WAP (G),

there are, in general, many different invariant means on Asp(G).

In Section 3 we observe that the still larger algebra Tame(G), of tame func-

tions on G, is not, in general, left amenable. Equivalently, tame dynamical

systems need not admit an invariant probability measure. This is a bit surpris-

ing as the class of tame dynamical systems, although it contains many sensitive

dynamical systems, can still be considered as non-chaotic in the sense that its

members lie on the “tame” side of the Bourgain–Fremlin–Talagrand dichotomy

(see [9, 7, 8, 11]).

We are grateful to I. Namioka for sending us his manuscript [28].

1. A generalization of Ryll-Nardzewski’s fixed point theorem

1.1. Sensitivity and fragmentability. Let (X, τ) be a topological space

and (Y, ξ) a uniform space. We say that X is (τ, ξ)-fragmented by a (typically

not continuous) function α : X → Y if for every nonempty subset A of X and

every ε ∈ ξ, there exists an open subset O of X such that O ∩ A is nonempty

and α(O ∩ A) is ε-small in Y . Note that it is enough to check the condition

above for closed subsets A ⊂ X .

This definition of fragmentability is a slight generalization of the original

one which is due to Jayne and Rogers [20]. It appears implicitly in a work of

Namioka and Phelps [30] which deals with a characterization of Asplund Banach

spaces V in terms of (weak∗,norm)-fragmentability (Lemma 1.3.1), whence the

nameNamioka–Phelps spaces in the locally convex version of Asplund spaces

given in Definition 1.10 below. See [27, 21, 22, 9, 11] for more details.

Let again α : X → Y be a (typically not continuous) map of a topological

space (X, τ) into a uniform space (Y, ξ). We say that X is (τ, ξ)-nonsensitive

(with respect to α), or simply ξ-nonsensitive, when τ is understood, if for

every ε ∈ ξ there exists a non-void open subset O in X such that α(O) is ε-

small. Thus X is (τ, ξ)-fragmented iff every non-void (closed) subspace A of X

is ξ-nonsensitive with respect to the restricted map αA : A → X .
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Now let X be a compact S-system endowed with its unique compatible uni-

form structure μ. The S-system (X,μ) is nonsensitive, NS for short, if for

every ε ∈ μ there exists an open nonempty subset O of X such that sO is ε-small

in (X,μ) for all s ∈ S. We say that an S-system X is hereditarily nonsen-

sitive (HNS) if every closed S-subsystem of X is nonsensitive. Note that for a

minimal S-system, nonsensitivity is the same as hereditary nonsensitivity.

If we let μS be the uniform structure on X generated by the entourages of

the form εS = {(x, x′) ∈ X × X : (sx, sx′) ∈ ε, ∀s ∈ S} for ε ∈ μ, then

hereditary nonsensitivity is equivalent to the requirement that the identity map

id : (X,μ) → (X,μS) be fragmented. For more details about (non)sensitivity

of dynamical systems refer, e.g., to [1, 13, 9].

As was shown by Namioka [27], every weakly compact subset (X, τ)

in a Banach space V is (τ, norm)-fragmented (with respect to the map

id : (X, τ) → (X, norm)). We need the following generalization.

Lemma 1.1 ([21, Prop. 3.5]): Every weakly compact subset (X, τ) in a locally

convex space V is (τ, ξ)-fragmented, where ξ is the natural uniform structure

of V .

Proof. For completeness we give a sketch of the proof. The topology of a locally

convex space V coincides (see [32, Ch. IV, 1.5, Cor. 4]) with the topology of uni-

form convergence on equicontinuous subsets of V ∗. By the Alaouglu–Bourbaki

theorem every equicontinuous subset of V ∗ is weak∗ precompact, where by the

weak∗ topology we mean the usual σ(V ∗, V ) topology on the dual V ∗. There-
fore, the collection of subsets

[K, ε] = {(v1, v2) ∈ V × V | |f(v1)− f(v2)| < ε ∀f ∈ K},
whereK is a weak∗ compact equicontinuous subset in V ∗ and ε > 0, forms a base

for the uniform structure ξ on V . In order to show that X is (τ, ξ)-fragmented

we have to check that for every closed nonempty subset A of X and every [K, ε],

there exists a τ -open subset O of X such that O ∩ A is nonempty and [K, ε]-

small. Since (A, τ) is weakly compact in V , the evaluation map π : A×K → R

is separately continuous. By Namioka’s joint continuity theorem, [25] Theorem

1.2, there exists a point a0 of A such that π is jointly continuous at every

point (a0, y), where y ∈ K. Since K is compact one may choose a τ -open

subset O of X containing a0 such that |f(v1)− f(v2)| < ε for every f ∈ K and

v1, v2 ∈ O ∩ A.
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The following lifting lemma strengthens a result of Hansel and Troallic [18]

which in turn was inspired by a technique developed by Veech [33].

Lemma 1.2: Let X be a compact minimal S-system with its unique compatible

uniform structure μ. Assume that X is ξ-nonsensitive (e.g., ξ-fragmented) with

respect to an S-map α : X → M into a uniform space (M, ξ), where the

semigroup action of S on M is ξ-distal. Then every pair (x, y) in X with

distinct images α(x) �= α(y) is μ-distal. In particular, if α is injective then the

S-action on (X,μ) is distal.

Proof. Consider a pair of points x, y ∈ X with α(x) �= α(y). Since M is ξ-distal

there exists an entourage ε ∈ ξ such that

(sα(x), sα(y)) /∈ ε ∀s ∈ S.

As X is ξ-nonsensitive, there exists a non-void μ-open subset O ⊂ X such

that α(O) is ε-small. By minimality of X

X =
⋃

s∈S

s−1O,

where s−1O = {x ∈ X : sx ∈ O}. Set
γ :=

⋃

s∈S

(s−1O × s−1O) ⊂ X ×X.

Then γ ∈ μ (every open neighborhood of the diagonal in X ×X for a compact

Hausdorff space X is an element of the unique compatible uniform structure).

Since α is an S-map one easily gets

(sx, sy) /∈ γ ∀s ∈ S.

For later use we list in Lemma 1.3 some additional situations where frag-

mentability appears. First recall some necessary definitions. A Banach space

V is called Asplund if the dual of every separable Banach subspace of V is

separable. We say that a Banach space V is Rosenthal if it does not contain

an isomorphic copy of l1 [11]. A uniform space (X, ξ) is called uniformly Lin-

delöf [21] (or ℵ0-precompact [19]) if for every ε ∈ μ there exists a countable

subset A ⊂ X such that A is ε-dense in X .

Lemma 1.3: (1) [27] A Banach space V is Asplund iff every bounded subset

of the dual V ∗ is (weak∗, norm)-fragmented.
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(2) [11] A Banach space V is Rosenthal iff every bounded subset of the dual

V ∗ is (weak∗, weak)-fragmented.

(3) [27] A topological space (X, τ) is scattered (i.e., every nonempty sub-

space has an isolated point) iff X is (τ, ξ)-fragmented for any uniform

structure ξ on the set X . A compact space X is scattered iff the Banach

space C(X) is Asplund.

(4) Let (X, τ) be a compact space and ξ a uniform structure on the set X .

Assume that (X, ξ) is uniformly Lindelöf (e.g., ξ-separable) and that

there exists a base for the uniformity ξ consisting of τ -closed subsets of

X ×X . Then X is (τ, ξ)-fragmented.

(5) [9, Prop. 6.7] If X is a Polish space and ξ a metrizable separable uniform

structure on Y , then f : X → Y is fragmented iff f is a Baire 1 function.

Proof. (4) It is easy to check, using Baire category theorem, that X is (τ, ξ)-

fragmentable.

1.2. Fixed point theorems. An S-affine compactification of an S-system

X is a pair (Q,φ) where Q is a compact convex affine S-system, and φ : X → Q

is a continuous S-map such that co(φ(X))=Q. See [12] for a detailed exposition.

If X is a compact S-system, then the natural embedding δ : X → P (X)

into the affine compact S-system P (X) of probability measures on X , defines

an S-affine compactification (P (X), δ). Moreover this S-affine compactifica-

tion is universal in the sense that for any other S-affine compactification

(Q,φ) of X there exists a uniquely defined continuous affine surjective S-map

b : P (X) → Q, called the barycenter map, such that b ◦ δ = φ.

Definition 1.4: A (not necessarily compact) S-system X has the affine fixed

point (a.f.p.) property if whenever (Q,φ) is an S-affine compactification of

X , then the dynamical system Q has a fixed point. When X is compact, in view

of the remark above, this is equivalent to saying that X admits an S-invariant

probability measure.

Theorem 1.5: Let (X, τ) be a compact S-system and (M, ξ) a uniform space

equipped with a semigroup action of S. Suppose:

(1) There exist a compact subsystem (minimal subsystem) Y ⊂ X and an

injective S-map α : Y → M such that Y is (τ, ξ)-fragmented (respec-

tively, (τ, ξ)-nonsensitive).
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(2) The action of S on α(Y ) is ξ-distal.

Then the S-system X has the affine fixed point property.

Proof. Let (Q,φ) be an S-affine compactification of X . Let Y ⊂ X be a τ -

compact subsystem which satisfies the conditions (1) and (2). Since the s-

translations λs : Q → Q are continuous, the closed convex hull Q0 = co(Y ) is

S-invariant.

Fragmentability is a hereditary property, hence in any case we may assume

that Y is minimal and (τ, ξ)-nonsensitive. Applying Lemma 1.2 to the map

α : (Y, τ) → (α(Y ), ξ), we see that the S-system Y is τ -distal. By Furstenberg’s

theorem 0.2 the distal dynamical system (S, Y, τ) admits an invariant probabil-

ity measure. Therefore, the compact S-system P (Y ) has a fixed point. Since

Q0 is an S-factor of P (Y ) via the barycenter map b : P (Y ) → Q0, we conclude

that Q0, and hence also Q, admit a fixed point.

Lemma 1.1 shows that the following result is indeed a generalization of Ryll-

Nardzewski’s fixed point theorem.

Theorem 1.6: Let τ1 and τ2 be two locally convex topologies on a vector space

V with their uniform structures ξ1 and ξ2, respectively. Let Q be a τ1 compact

convex subset of V . Assume that S ×Q → Q is a semigroup action such that

Q is an affine τ1-compact S-system. Let X be an S-invariant τ1-closed subset

of Q such that:

(1) X is either (τ1, ξ2)-fragmented, or X is minimal and (τ1, ξ2)-sensitive,

(2) the S-action is ξ2-distal on X .

Then Q contains a fixed point.

Proof. Applying Theorem 1.5 to the map id : (X, τ1) → (Q, ξ2) it follows that

X has the a.f.p. property. Hence the compact affine S-system Q0 := co(X) has

a fixed point, which is also a fixed point of Q.

Corollary 1.7: Theorem 1.6 includes, in particular, the following results:

(1) Ryll-Nardzewski’s theorem 0.1.

(2) Furstenberg’s theorem 0.2 and its generalized version of Namioka [24,

Theorem 4.1].
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(3) Veech’s theorem concerning weakly compact subsets in Banach spaces

[33, Cor. 2.5] and its locally convex version of Namioka (see [33, p. 361]

and [28, Thm 5.1]).

(4) Namioka–Phelps’ theorem [30, p. 745] about weak-star compact con-

vex subsets in the dual V ∗ of an Asplund Banach space V (see also

Proposition 1.10 and Remark 1.12 below).

(5) Assume in the hypotheses of Theorem 1.6 that condition (1) is replaced

by

(
) X ⊂ V is ξ2-separable (or, more generally, ξ2 uniformly Lindelöf)

and there exists a base for the uniformity ξ2 consisting of τ1-closed

subsets of X ×X .

Then Q contains a fixed point.

Proof. (1) Apply Theorem 1.6 (with X = Q) and Lemma 1.1.

(2) Let V be the locally convex space (C(X)∗, w∗), with its weak-star topol-

ogy. Let ξ be the corresponding uniform structure and let Q = P (X). Thus,

in this case τ1 = τ2 = w∗ and ξ1 = ξ2 = ξ coincide on X ⊂ C(X)∗. Hence, in

particular, X is (τ1, ξ2)-fragmented and S is ξ2-distal on X . (Of course this is

not a new proof of Furstenberg’s theorem, as our proof of Theorem 1.6 relies on

it. This is merely the claim that, conversely, Furstenberg’s theorem also follows

from Theorem 1.6.)

(3) We need, as in (1), to apply Lemma 1.1 (but now X is not necessarily all

of Q).

(4) Recall that by Lemma 1.3.1 weak∗ compact subsets in the dual of an

Asplund space V are (weak∗, norm)-fragmented.

(5) Apply Lemma 1.3.4 and Theorem 1.6.

Remark 1.8: (1) In cases where the distality can be extended to (or is assumed

on) all of Q the existence of a fixed point can be achieved without the use of

Furstenberg’s theorem 0.2, either by Hahn’s fixed point theorem or via Glasner’s

results using the concept of strong proximality [5, 6] (see also Example 3.1

below).

(2) Namioka and Phelps noticed [30, p. 745] that Ryll-Nardzewski’s theorem

is not generally true in dual spaces V ∗ when the weak topology is replaced by

the weak∗ topology. Thus the assumption that V is Asplund in Corollary 1.7.4

is essential.
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(3) Case (5) of Corollary 1.7 strengthens a result of Namioka [23, Theorem

3.7] and covers the results of Hansel–Troallic [18]. The latter, and also [15,

p. 174], use the standard reduction to the case where S is countable and V is

(weakly) separable.

1.3. The dual system fixed point property and Namioka–Phelps spa-

ces. As mentioned in Lemma 1.3.1, a Banach space V is Asplund iff every

bounded subset of its dual is (weak∗, norm)-fragmented. This fact together

with Theorem 1.6 and Remark 1.8.2 suggest Definition 1.9 below. First, a

few words of explanation. For a locally convex space V , the standard uniform

structure ξ∗ of the dual V ∗ is the uniform structure of uniform convergence on

the family of all bounded subsets of V . By the Alaoglu–Bourbaki theorem every

equicontinuous subset Q of V ∗ is relatively weak∗ compact. Conversely, if V is

a barreled space (or, if V is Baire as a topological space) then it follows from

the generalized Banach–Steinhaus theorem (see [32, Ch. III, §4.2]) that every

weak∗ compact subset of V ∗ is equicontinuous. Clearly, if V is a normed space

then the equicontinuous subsets of the dual V ∗ are exactly the norm bounded

subsets.

Definition 1.9: (a) We say that a Banach space V has the dual system fixed

point property if for every semigroup S, every convex weak∗ compact norm-

distal affine S-system Q ⊂ V ∗ has a fixed point.

(b) More generally, a locally convex space V has the dual system fixed

point property if wheneverQ ⊂ V ∗ is a weak∗ compact convex affine S-system

such that (1) Q as a subset of V ∗ is equicontinuous and (2) S is ξ∗-distal on
Q, then Q has a fixed point. (Note that if V is barrelled then we may drop the

assumption (1).)

Definition 1.9 and Theorem 1.6 lead to the study of locally convex vec-

tor spaces V such that every (w∗-compact) equicontinuous subset K in V ∗

is (weak∗,ξ∗)-fragmented. This is a locally convex version of Asplund Banach

spaces. In fact, this definition was already introduced in [21], where it was

motivated by problems concerning continuity of dual actions. A typical result

of [21] asserts that if V is an Asplund Banach space then for every continuous

linear action of a topological group G on V the corresponding dual action of G

on V ∗ is continuous.
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Definition 1.10 ([21]): A locally convex space V is called a Namioka–Phelps

space, (NP)-space for short, if every equicontinuous subset K in V ∗ is

(weak∗,ξ∗)-fragmented.

Now by Theorem 1.6 we get:

Corollary 1.11: Every (NP) locally convex space has the dual system fixed

point property.

Remark 1.12: Recall that the class (NP) is quite large and contains:

(1) Asplund (hence, also reflexive) Banach spaces.

(2) Frechet differentiable spaces.

(3) Semireflexive locally convex spaces.

(4) Quasi-Montel (in particular, nuclear) spaces.

(5) Locally convex spaces V having uniformly Lindelöf V ∗ (equivalently,

V ∗ is a subspace in a product of separable locally convex spaces).

The class (NP) is closed under subspaces, continuous bound covering linear

operators, products and locally convex direct sums. See [21] for more details.

2. Hereditary nonsensitivity and invariant measures

2.1. Affine dynamical systems admitting a fixed point. In Theorem

1.6 and its prototype 0.1 an additional “external” condition is imposed on the

affine dynamical system Q. The following proposition characterizes, in the case

of a group action, those affine dynamical systems which admit a fixed point.

Proposition 2.1: Let Q be an affine compact G-system, where G is a group.

Then the following conditions are equivalent:

(1) Q contains a fixed point.

(2) Q contains a scattered compact subsystem.

(3) Q contains a HNS compact subsystem.

(4) Q contains an equicontinuous compact subsystem.

(5) Q contains a distal compact subsystem.

(6) There exist a compact subsystem (minimal subsystem) Y ⊂ X , a uni-

form space (M, ξ) with a ξ-distal action of G on M , and an injective

G-map α : Y → M such that Y is (τ, ξ)-fragmented (resp., (τ, ξ)-

nonsensitive).
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(7) Q contains a compact subsystem admitting an invariant probability

measure.

Proof. (1) ⇒ (2) Is trivial.

(2) ⇒ (3) Every scattered compact G-system X is HNS. In fact, observe

that X , being scattered, is (τ, ξ)-fragmented (Lemma 1.3.3) for any uniform

structure ξ on the set X . Now see the definition of HNS as in Subsection 1.1.

A second proof: As C(X) (by Lemma 1.3.3) is Asplund, the regular dynamical

system representation of G on C(X) ensures that X is Asplund representable.

This implies that X is HNS by [9, Theorem 9.9].

(3) ⇒ (4) Assume that Q contains a HNS compact subsystem X . Then any

minimal compact G-subsystem Y of X is equicontinuous by [9, Lemma 9.2.3].

(4) ⇒ (5) This is well known and easy to see for group actions on compact

spaces (it is not, in general, true for semigroup actions).

(5) ⇒ (6) Consider the identity map α : X → M = X and let ξ be the

compatible uniform structure on X .

(6) ⇒ (7) Follows from Theorem 1.5 and Definition 1.4.

(7) ⇒ (1) As in the proof of Theorem 1.5 use the barycenter map.

Proposition 2.2: Every HNS compact G-system X admits an invariant prob-

ability measure.

Proof. The compact affine G-system P (X) contains X as a subsystem which is

HNS. Thus, Proposition 2.1 applies.

2.2. HNS dynamical systems, Asplund functions and amenability of

Asp(G). In this subsection G will denote a topological group and a “G-system”

will mean a dynamical system with a jointly continuous action. In fact, the

results remain true for semitopological groups2 but for simplicity we consider

only the case of topological groups.

Recall that a (continuous, bounded) real valued function f : G → R is an

Asplund function, if there is a HNS compact G-system X , a continuous

function F : X → R, and a point x0 ∈ X such that F (gx0) = f(g), for every

g ∈ G. Every f ∈ Asp(G) is right and left uniformly continuous. The collection

Asp(G) of Asplund functions is a uniformly closed G-invariant subalgebra of

2 A semitopological group is a group endowed with a topology with respect to which

multiplication is separately continuous.
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l∞(G) and Asp(G) contains the algebra WAP (G) of weakly almost periodic

functions on G. Refer to [22, 9] for more details.

A left translation G-invariant normed unital subspace F ⊂ l∞(G) is said to

be left amenable (see, for example, [16] or [2]) if the affine compact G-system

Q = M(F ) of means on F has a fixed point, a left invariant mean. It is

a classical result of Ryll-Nardzewski [31] that WAP (G) is left amenable.3 We

extend this result to Asp(G).

Proposition 2.3: Asp(G) is left amenable.

Proof. Denote by X := |Asp(G)| the Gelfand space of the algebra Asp(G). By

[9, Theorem 9.9] the dynamical system X is HNS. The Gelfand space X can be

identified with the space of multiplicative means on the algebra V := Asp(G).

Thus X is embedded as a G-subsystem in the compact affine G-system Q :=

M(V ) of means on V .

Let Y be a minimal G-subsystem of X . Then the G-system Y is HNS as

well. Furthermore, Y is equicontinuous by [9, Lemma 9.2.3]. Thus Q contains

an equicontinuous compact G-subsystem Y and Proposition 2.1 implies that Q

has a fixed point.

Corollary 2.4 (Ryll-Nardzewski [31]): WAP (G) is left amenable.

Remarks 2.5: (1) Examples constructed in [14] (together with Theorem 11.1 of

[9]) show that a point transitive HNS Z-dynamical system can contain un-

countably many minimal subsets (unlike the situation in a point-transitive

WAP-dynamical system where there is always a unique minimal set). As a

Z-dynamical system, each of these minimal sets supports an invariant measure,

and since our dynamical systems are factors of the universal HNS dynamical

system |Asp(Z)|, it follows that the latter has uncountably many distinct in-

variant measures. As there is a one-to-one correspondence between invariant

probability measures on |Asp(G)| and invariant means on the algebra Asp(G),

we conclude that, unlike WAP (Z) where the invariant mean is unique, the

algebra Asp(Z) admits uncountably many invariant means.

(2) The group G in Proposition 2.3 and Corollary 2.4 cannot be replaced, in

general, by semigroups. Indeed recall [2, p. 147] that even for finite semigroups

3 Note that WAP (G), in addition, is also right amenable [31].
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the algebra AP (S) of the almost periodic functions need not be left (right)

amenable.

3. Concerning tame dynamical systems

As we have already mentioned, a compact G-system X is HNS iff it admits

sufficiently many representations on Asplund Banach spaces. In a recent work

[11] we have shown that an analogous statement holds for the family of tame

dynamical systems and the larger class of Rosenthal Banach spaces. A (not

necessarily metrizable) compact G-system X is said to be tame if for every

element p ∈ E(X) of the enveloping semigroup E(X) the function p : X → X

is fragmented (equivalently, Baire 1, for metrizable X ; see Lemma 1.3.5).

The algebra Tame(G) of tame functions coincides with the collection of func-

tions which appear as matrix coefficients of continuous co-representations of G

on Rosenthal Banach spaces.

One may ask if Propositions 2.1, 2.2 and can be extended from HNS to

tame dynamical systems and if the left amenability of Asp(G) (Proposition 2.3)

remains true for Tame(G). The following counterexample shows that in general

this is not the case.

Example 3.1: There exists a tame minimal compact metric G-system X such

that P (X) does not have a fixed point (equivalently, X does not have an in-

variant probability measure).

Proof. Take X = P
1 to be the real projective line: all lines through the origin in

R
2. Let T be a parabolic Möbius transformation (with a single fixed point); let

R = Rα be a Möbius transformation which corresponds to an irrational rotation

of the circle. Let G = 〈T,R〉 be the subgroup of Homeo(X) generated by T and

R. It is easy to see that the dynamical system (G,X) is minimal. Furthermore,

every element p of E(X), the enveloping semigroup of (G,X), is a linear map.

It can be shown that p is either in GL(2,R) or it maps all of X \ {x0} onto x1,

where x0 and x1 are points in X . In particular, every element of the enveloping

semigroup E(X) is of Baire class 1. This last fact implies that X is tame. It

is easily checked that (G,X) is strongly proximal in the sense of [6] (that is,

P (X), as a G-system, is proximal), and that X is the unique minimal subset of

P (X). Thus every fixed point of P (X) is contained in X and, as X is minimal,

it follows that X is trivial, a contradiction.
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Corollary 3.2: There exists a finitely generated group G for which the alge-

bra Tame(G) is not left amenable.

Proof. In Example 3.1 we described a metric tame minimal G-system X , with

G a group generated by two elements, which does not admit an invariant prob-

ability measure. The Gelfand space |Tame(G)| is the universal point-transitive
tame G-system; i.e., for every point-transitive tame G-system (G,Z) there is

a surjective homomorphism |Tame(G)| → Z. In particular, we have such a

homomorphism φ : |Tame(G)| → X . Now, the left amenability of Tame(G) is

equivalent to the existence of a G-invariant mean on Tame(G) which, in turn,

is equivalent to the existence of a G-invariant measure on |Tame(G)|. However,
if μ is such a measure then its image ν := φ∗(μ) is an invariant measure on X ;

but this contradicts Example 3.1.

Since every tame compact metric G-system admits a faithful representation

on a Rosenthal Banach space [11], it follows from Example 3.1 that Rosenthal

Banach spaces need not have the dual system fixed point property.
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